Skip to main content
Feb 26, 2016 / Haseeb Jamal -

5 Travel Myths You Need to Stop Believing Right Now

Feb 26, 2016 / Haseeb Jamal -

Canal Comes Alive with Lighted Boat Parade.

Physical Components and Devices in ITS

By: Haseeb Jamal / On: Jan 23, 2017 / Traffic Engineering
Intelligent Transportation System
 
 
  1. Field Equipment
    1. Inductive loop detectors
    2. Magnetic detectors
    3. Infrared and microwave
    4. Acoustic detectors
    5. Video imaging
  2. Communication
    1. Wired communication
    2. Wireless communication
  3. Traffic management center
    1. Basic facility
    2. Signal control
    3. Traffic surveillance
    4. Freeway control
    5. Integration for regional control
    6. Incident detection
    7. Incident response
    8. Information Dissemination
    9. Electronic tolls
    10. Rail crossing monitor

Physical Components and Devices in ITS

Field Equipment

Inductive loop detectors

One of the primary devices used in ITS, inductive loop detectors are installed beneath the road surface to detect the presence of vehicles. These detectors generate an electromagnetic field and measure disturbances caused by passing vehicles, providing real-time traffic information such as vehicle presence, occupancy, and speed.

Magnetic detectors

Similar to inductive loop detectors, magnetic detectors utilize magnetometers to detect changes in the Earth's magnetic field caused by passing vehicles. They offer advantages in terms of cost-effectiveness, durability, and ease of installation.

Infrared and microwave

These detectors employ infrared or microwave technology to monitor traffic flow and detect vehicles. Infrared detectors use infrared beams to detect interruptions caused by passing vehicles, while microwave detectors measure the Doppler shift of reflected microwaves to determine vehicle speed and occupancy.

Acoustic detectors

Acoustic detectors use sound waves to detect vehicle presence and movements. They are particularly useful in areas where other detection methods may face challenges, such as tunnels or under bridges.

Video imaging

Video imaging systems employ cameras and computer vision algorithms to analyze live or recorded video footage of roadways. They can detect various traffic parameters, including vehicle count, speed, and lane occupancy. Additionally, video imaging systems are used for license plate recognition, incident detection, and surveillance purposes.

Communication

i. Wired communication

Wired communication infrastructure forms the backbone of an intelligent transport system. It includes fiber optic cables, Ethernet connections, and other wired networks that facilitate data transmission between various components of the system. Wired communication ensures high-speed and reliable data exchange.

  1. Fiber optic

  2. Twisted pair wires

ii. Wireless communication

Wireless communication plays a vital role in ITS, enabling real-time connectivity between field devices, traffic management centers, and vehicles. Technologies such as cellular networks, Wi-Fi, and dedicated short-range communications (DSRC) allow for seamless data transmission and communication in both urban and remote areas.

  1. Microwave
  2. Radio

  3. Cellular technology

Traffic Management Center

The Traffic Management Center (TMC) serves as the nerve center of an intelligent transport system. It comprises several components that collectively facilitate efficient traffic management, incident response, and information dissemination. Let's explore these components:

Basic facility

The TMC serves as a central hub for monitoring and managing the entire transportation network. It includes workstations, servers, network infrastructure, and control systems necessary for system operation.

Signal control

TMCs enable centralized control of traffic signals at intersections. Traffic engineers can adjust signal timings based on real-time traffic conditions, reducing congestion and improving traffic flow.TMCs enable centralized control of traffic signals at intersections. Traffic engineers can adjust signal timings based on real-time traffic conditions, reducing congestion and improving traffic flow.

Traffic surveillance

Through a network of cameras and sensors, TMCs provide real-time surveillance of roadways. This enables traffic operators to identify incidents, monitor traffic conditions, and respond promptly to emergencies.

Freeway control

TMCs manage and control freeway operations, including ramp metering, variable message signs, and dynamic lane control systems. These measures help optimize traffic flow and minimize congestion on freeways.

Integration for regional control

TMCs often integrate with neighboring TMCs or regional transportation management centers to facilitate coordinated traffic management across a wider area. This integration enables the exchange of data and coordination of responses during regional incidents or events.

Incident detection

TMCs employ advanced algorithms and data analytics to detect traffic incidents such as accidents, congestion, or road hazards. Early detection enables prompt response, improving safety and minimizing the impact on traffic flow.

Incident response

Once an incident is detected, TMCs facilitate quick and effective incident response. They coordinate emergency services, provide real-time information to drivers, and implement traffic diversions to ensure the safety of road users and minimize disruptions.

Information Dissemination

TMCs serve as information hubs, relaying real-time traffic updates, travel advisories, and alternative route suggestions to motorists through variable message signs, mobile apps, websites, and other communication channels.

Electronic tolls

TMCs often incorporate electronic tolling systems that automate toll collection and traffic flow at toll plazas. This technology minimizes congestion, improves payment efficiency, and enhances the overall road user experience.

Rail crossing monitor

TMCs also oversee the monitoring and control of railway crossings to ensure safe passage for vehicles and trains. They may integrate with railway systems to provide real-time information about train schedules, crossing statuses, and potential conflicts.

 

Search AboutCivil

Related Civil-Engg. Content